Variable Selection in Finite Mixture of Regression Models
نویسندگان
چکیده
منابع مشابه
Variable Selection in Finite Mixture of Regression Models
In the applications of finite mixture of regression (FMR) models, often many covariates are used, and their contributions to the response variable vary from one component to another of the mixture model. This creates a complex variable selection problem. Existing methods, such as the Akaike information criterion and the Bayes information criterion, are computationally expensive as the number of...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملRobust variable selection for mixture linear regression models
In this paper, we propose a robust variable selection to estimate and select relevant covariates for the finite mixture of linear regression models by assuming that the error terms follow a Laplace distribution to the data after trimming the high leverage points. We introduce a revised Expectation-maximization (EM) algorithm for numerical computation. Simulation studies indicate that the propos...
متن کاملFinite mixture regression: a sparse variable selection by model selection for clustering
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملBayesian Variable Selection in Markov Mixture Models
Bayesian methods for variable selection have become increasingly popular in recent years, due to advances in MCMC computational algorithms. Several methods have been proposed in literature in the case of linear and generalized linear models. In this paper we adapt some of the most popular algorithms to a class of non-linear and non-Gaussian time series models, i.e. the Markov mixture models (MM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2007
ISSN: 0162-1459,1537-274X
DOI: 10.1198/016214507000000590